Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 354: 141654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462188

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Propionatos , Masculino , Feminino , Camundongos , Animais , Lipidômica , Camundongos Endogâmicos C57BL , Fluorocarbonos/análise , Fígado/metabolismo , Ácidos Alcanossulfônicos/metabolismo
2.
Anal Bioanal Chem ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37875675

RESUMO

The goal of lipidomic studies is to provide a broad characterization of cellular lipids present and changing in a sample of interest. Recent lipidomic research has significantly contributed to revealing the multifaceted roles that lipids play in fundamental cellular processes, including signaling, energy storage, and structural support. Furthermore, these findings have shed light on how lipids dynamically respond to various perturbations. Continued advancement in analytical techniques has also led to improved abilities to detect and identify novel lipid species, resulting in increasingly large datasets. Statistical analysis of these datasets can be challenging not only because of their vast size, but also because of the highly correlated data structure that exists due to many lipids belonging to the same metabolic or regulatory pathways. Interpretation of these lipidomic datasets is also hindered by a lack of current biological knowledge for the individual lipids. These limitations can therefore make lipidomic data analysis a daunting task. To address these difficulties and shed light on opportunities and also weaknesses in current tools, we have assembled this review. Here, we illustrate common statistical approaches for finding patterns in lipidomic datasets, including univariate hypothesis testing, unsupervised clustering, supervised classification modeling, and deep learning approaches. We then describe various bioinformatic tools often used to biologically contextualize results of interest. Overall, this review provides a framework for guiding lipidomic data analysis to promote a greater assessment of lipidomic results, while understanding potential advantages and weaknesses along the way.

3.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732276

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of man-made chemicals that are persistent and highly stable in the environment. The diverse structures of PFAS give them different chemical properties that influence their solubility in different environmental matrices and biological tissues. PFAS in drinking water have been extensively studied, but information on their presence in fish and other exposure routes is limited. To address this, a non-targeted analysis using liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) was performed to evaluate PFAS in fish fillets from in central North Carolina and compare with PFAS data from previously published water. A total of 22 different PFAS were detected in the fillets, including only 4 of the PFAS reported in water. Both more PFAS types and higher concentrations were observed in fish caught near a known PFAS point-source compared to those from a reservoir used for drinking water and recreation. Median fillet PFOS levels were 54 ppb in fish closest to the point source and 14-20 ppb in fish from the reservoir. Thus, future PFAS monitoring should include both targeted and non-targeted analyses of both water and fish to increase understanding of human exposure risks and ecosystem impacts. SYNOPSIS: Fish fillet samples were collected from five sites in North Carolina. PFAS were detected in all samples and differences in analytes and abundances were observed at the different sites. GRAPHICAL ABSTRACT: For use in table of contents only.

4.
Anal Chem ; 95(34): 12913-12922, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37579019

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often assessed and visualized using various supervised and unsupervised statistical approaches. However, these approaches tend to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes. Due to the ensembled approach, AMP scores are able to overcome limitations associated with individual models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization MSI. Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.


Assuntos
Diagnóstico por Imagem , Neoplasias , Humanos , Diagnóstico por Imagem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias/diagnóstico por imagem , Metabolômica , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Imagem Molecular/métodos
5.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333214

RESUMO

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often visualized using single ion images and further analyzed using machine learning and multivariate statistics to identify m/z features of interest and create predictive models for phenotypic classification. However, often only a single molecule or m/z feature is visualized per ion image, and mainly categorical classifications are provided from the predictive models. As an alternative approach, we developed an aggregated molecular phenotype (AMP) scoring system. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores therefore allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes, leading to high diagnostic accuracy and interpretability of predictive models. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization (DESI) MSI. Initial comparisons of cancerous human tissues to normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

6.
Bio Protoc ; 8(18): e3008, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395799

RESUMO

Kavalactones are a class of lactone compounds found in Kava, a traditional beverage from the South Pacific Islands that is derived from the root of Piper methysticum. When consumed, these compounds produce sedative and anxiolytic effects, suggesting their potent actions on the nervous system. Here, we provide a protocol to examine the effects of kavalactones on C. elegans neuromuscular excitability. Our methodology could provide insight into the neurophysiological actions of kavalactones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...